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ABSTRACT 

We prove that every arc of length L in E n lies in some hypercube of diagonal L 
and that every closed curve of length L lies in some hypercube of diagonal 
L/2. In the case n = 2, we find the smallest rectangle that can accommodate 
every arc of length L and the smallest rectangle that can accommodate every 
closed curve of length L. 

1. Introduction 

I t  is known (see [7]) that each arc of length L in  E n lies in a ball of  radius L/2, 

and each closed curve of  length Lhes in a ball of  radius L/4. In this note we prove 

that the hypercubes inscribed in these balls are already large enough: each arc 

of  length L lies in a hypercube of diagonal L, and each closed curve of length L 

lies in a hypercube of diagonal L/2. 

Section 3 is devoted to the result (due to A. Meir for n = 2) that every arc 

of  length L in E n lies in some semiball of  radius L/2. The hypercube of diagonal 

L is smaller than the semiball of  radius L/2 for every n > 3, but in the plane 

the semidisk is smaller than the square. In  the last section we determine the rec- 

tangles of  least area that can accommodate (plane) arcs and closed curves of 

length L. The result for closed curves depends on Cauchy's  formula for the length 

of a closed, convex curve; and the result for arcs, found by Jones and Schaer [4], 

depends on the solution of the " b r e a d w o r m "  problem presented in [6]. 

2. Boxes in E n 

We begin by studying orthotopes circumscribed about a closed curve in E ". 

An orthotope is the analog in E" of a rectangular region in the plane and a (solid) 
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rectangular parallelepiped in space. In suitable Cartesian coordinates, the ortho- 

tope T with edges el, e2, ". ,  e, is the region 

(1) T = {(xx, x2 , ' " , x , ) :  0 < xm < em for 1 < m < n}. 

Its main diagonal has length d = ( ~ "  2 m = 1 e,,) , and its hypervolume is l-I~, = i era. 

Its 2n faces (of dimension n - l )  are parallel by pairs: for each m = 1,2,. .- ,n 

the faces 

{(xDx2 ... . .  x,): xm = e, 0 < x k < ek for k # m} 

for e = 0 and e = em are both normal to the x,,-axis. 

We say that an orthotope Tis circumscribed about an arc F if F _c Tand  if F 

meets each of the 2n hyperplanes that bound T. Our results depend on the fol- 

lowing lemma, which extends to E" a result obtained in the plane by Jones and 

Schaer [4]. 

LEMMA I. The diagonal of any orthotope that is circumscribed about a 

closed curve of length L is at most L/2. 

PROOF. Choose coordinates so that the orthotope T circumscribed about the 

(sensed) closed curve F is given by (1). Let h 1 be the hyperplane xl = 0, let 

h~, ha,..., hz, be the remaining hyperplane faces of  Tindexed in an order in which 

they are touched by F ,  and let PI, Pz , ' " ,  P2n be points of F lying in hl, h2, '" ,  h2n, 
respectively. Note that the hyperplanes hi,h2, ...,h2, are distinct, but some o f  

the points P1,P2,...,P2n may coincide. Let P2n+I = P1. 
k (pk+l _ pk)2. Plainly, Write pk for the xm-coordinate of Pk, and put s,, = 

2n 2n 

Z(s~ )  ~ =  ]~ lpk ,+t - -pk  I > 2era 
k = l  k = l  

for each m = 1,2, ..., n, and 

s = PkPk+1 
~,m=l  

for each k = 1, 2, ..., 2n. Then according to Minkowski's inequality (see [-3, 31]) 

[ ~ l e  ]~ [ l ~  ( ~ " ) 2 ] ~  a = =< �89 
t m = l  \ k = !  

N �89 = �89 ~-* PkPk+l < 
k = l  m k = l  ~ 2 J  

proving the assertion (cf. [4]). 
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Another, more geometrical proof  of  this Lemma can be based on reflections. 

For each point P and hyperplane h, denote the point symmetric to P in h by 

hP.  If h' is a hyperplane, then hh" = {hP: P e h'} is also a hyperplane. If  h, h ' ,  

and h" are hyperplanes, we construe hh'h" from the right: hh'h" = {hP: P e h'h"}; 

and we agree that hh'h"P means h(h'(h"P)) rather than (hh'h")P.  Similar con- 

ventions hold for longer strings. 

Define hyperplanes kl, k2,,kz, recursively by setting k l = h l ,  k 2 = h 2 ,  

and for i = 2, 3,.. . ,  2 n -  1, 

ki+ t = kiki_ 1 ... k2hi+l,  

and define points Q1,Q2, ' " ,Q2,+I  by setting Q1 = P1, Q 2 -  P2, and for 

i = 2,3,- .- ,2n,  

Qi+l = kiki-1 "'" k2Pi+l. 

Fo r  each i = 1,2, . . . ,2n, the point Q~ lies on the hyperplane k i because Pi lies 

on the hyperplane hi, and so 

Qi = k~Qi = k i k i -1""  k2Pi. 

Successive reflections through the i - 1 hyperplanes k2, ka,-",  k~ carry both P,. 

to Qi and Pi+t to Qi+l. Consequently P~P~+I = QiQi+l for each i, and 

2n 2n 

PIP,+1 = ~' QiQi+l. 
i = 1  i = 1  

The point Q2.+ ~ is obtained by reflecting P~ successively through the hyper- 

planes k~, k2, ' " ,  k2,+~, k2,, in that order. Any two of these 2n hyperplanes are 

either parallel or perpendicular, and each is parallel to exactly one other. Since 

reflections in perpendicular hyperplanes commute, we can rearrange the sequence 

of reflections so that the parallel hyperplanes are adjacent: 

Q2,+ 1 = k2,k2, -1  "'" k2klP~ = k'2,k'2,_~ ... k'4k'ak'2k'~P~ 

where for each i = 1 ,2 , . . . ,n ,  the hyperplanes k~_ 1 and 22, are parallel. Since 

the product of reflections in two parallel hyperplanes is a translation through 

twice the distance between them, it is evident that if Q1 (=  P~) has coordinates 

(P~,P2, '" ,P, )  and Q2,+t has coordinates (q l ,q2 , ' " ,q , ) ,  then I qm - Pro] = 2era 

for each m = 1,2,-.., n. Thus 

I)' 
Q1Q2n+I ~--- qra -- Pm 2 = 2 = 2d, 

rn 1 
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where d is the diagonal of T. Consequently, 

Israel J. Math., 

2n 2 .  

L>= Y~ PiPi+l = ]~ Q~Qi+I > QIQz,+I = 2d. 
i = 1  i = 1  

and so d < L/2. 

The equality d = L/2 holds precisely for those closed polygonal curves 

F = [P1P2""P2,P~] that "unfold" to the segment [Q~Q2,+I], including the 

diagonal segment of the orthotope (traversed twice). 

The assumption that F _~ Twas never needed in the proof, so we have actually 

established a little more: 

COROLLARY 2. Every closed curve that meets each of the 2n hyperplanes 

that bound an orthotope of diagonal d in E" has length at least 2d; and every 

arc that meets each of these hyperplanes has length at least d. 

According to a well-known theorem of Kakutani [5] (for n = 3) and to Yamabe 

and Yujob6 [9] (for arbitrary n), any compact, convex set in E" has a circum- 

scribed hypercube. Let G be the closed, convex hull of a closed curve F of length 

L,  and let T be a hypercube circumscribed about G. Suppose that T has edge e 

and diagonal d. Then since every supporting hyperplane of G contains a point 

of F ,  the hypercube T is circumscribed about F; and according to the Lemma, 

e = dlx/n < L/(Zx/n). Thus, 

THEOREM 3. Every closed curve of length L in E" lies in some hypercube 

of edge L/(2x/n), but no smaller hypercube contains a congruent copy of every 

closed curve of length L. 

Now suppose that F is an arc of length L, and let F'  be the closed curve of 

length L' < 2Lthat is formed when the endpoints o fF  are connected by a segment. 

According to the Theorem, F' lies in some hypercube od edge L'/(2,r < L/x/-n. 

THEOREM 4. Every arc of length L in E" lies in some hypercube of edge 

L]x/n , but no smaller hypercube contains a congruent copy of every arc of 

length L. 

3. Semiballs in E" 

In answer to a question raised by Leo Moser, A. Meir proved some years 

ago that every plane arc of unit length lies in some closed semidisk of radius �89 

His elegant argument applies virtually unchanged in E". A semiball is a region 
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of the form B n H, where B is a (solid) ball and H is a closed halfspace whose 

face is a hyperplane through the center of B. 

THEOREM 5. Every arc of length L in E" lies in some semiball of radius 

L /2, but no smaller semiball contains a congruent copy of every arc of length L. 

PROOF. If  F is a closed arc of length L, let h be any supporting hyperplane 

of F ,  let H be the closed halfspace with face h that contains F ,  let R be any 

point of contact of F with h, and let B be the ball of radius L/2 centered at R. 

Then 1" obviously lies in the semiball B ~ H.  

If  F has distinct endpoints P and Q, let h be any supporting hyperplane of F 

that is parallel to the line PQ, let H be the closed halfspace with face h that 

contains F ,  let R be any point of contact of F with h, and let P' and Q' be the 

points symmetric to P and Q in h. The segments [PQ'] and [QP'] meet h at 

a point O. I f  X is any point of F that lies between P and R in F ,  then (cf. [7]) 

L 
OX < �89 + XQ') < �89 + XR + RQ) < - -  

~ ~ 2 ~ 

Similarly, OX < L/2 if X lies between R and Q on F.  Thus F lies in the semibal[ 

B n H ,  where B is the ball of radius L/2 centered at O. 

The hypervolume S, o f a  semiball of radius L/2 in E" is given by (see [2, 125 f.]) 

S , =  2"+Xm! when n = 2m 

~mm!L~ when n = 2m + 1 
2n! 

and the hypervolume C, of a hypercube of diagonal L in E ~ is C, = L'/n ~/2 . 

One can verify that C~ < S, for every n > 3, but $2 < C2. 

4. Rectangles in E 2 

In this section we determine the rectangles of least area that can accommodate 

every plane closed curve of length L and every plane arc of length L.It is apparently 

not known whether the rectangles described here are the best (i.e., smallest) con- 

vex quadrilaterals, nor are analogous results known for n > 3. 

The argument for closed curves is simplified by the observation that it is enough 

to consider closed, convex curves. The length L' of the closed, convex curve that 

bounds the convex hull of a closed curve F of length L is at most L (a proof of 
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this well-known fact is given in [6]), and so, by a suitable dilatation, one can 

produce a convex curve cf  length L that surrounds F.  Consequently, a convex 

region can accommodate all closed curves of length L if and only if it can ac- 

commodate all closed, convex curves of length L. 

THEOREM 6. Among all rectangles that can accommodate all closed curves 

of length L, the rectangle with least area has sides L/zt and L(7/: 2-4)-~/(2rc) and 

area approximately 0.122737L 2. 

PROOF. Without loss of generality we assume that L=  1. According to Cauchy's 

formula (see [1, 48f.]), if w(O) is the width in the direction 0 of a closed, con- 

vex curve F of length 1, then 

1 fo2'~w 1 2-? (O) dO = - .  

Consequently there exist directions 01 and 02 such that 

w(01) < _1 =< w(Oz), 
it, 

and by the continuity of w(O) there is a direction 00 such that w(Oo) = z -~. 

The rectangle circumscribed about I" with one side in the direction 0o has a side 

of length z -  t ; let a be the length of the other side. By Lemma 1, a < (2- 2 _ n-  2),. 

Thus the rectangle with sides ~-1 and (z2-4)�89 can accommodate F.  

No smaller rectangle can accommodate every such closed curve, because one 

side must be at least re- 1 (so that a circle of circumference 1 can be accommodated) 

and the diagonal must be at least �89 (so that a segment of length �89 can be accom- 

modated). 

It is worth remarking that the area of any closed, convex set that contains a 

congruent copy of every closed curve of length L must be at least 

4~ ---5 (~2 _ 4)�89 + 7z - 2 arccos g 0.096330U, 

for this is the area of the smallest convex set spanned by a segment of length L/2 

and a circle of  circumference L. It is easy to see that the minimal configuration 

is the arrangement in which the midpoint of the segment is the center of the circle. 

The corresponding result for arcs depends on the solution of the "broadworm"  

problem, obtained in [6]: 
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LEMMA 7. Let 

e = arcsin + ~ -  sin ~ -  ~ 0.290046 

7 =  arctan ( 1  sec e ) ~ ,  0.480931 

fl = ~ - e - 2 7  ~ 0.318888 

bo = ~(fl + tane  + tanT) -1 ~ 0.438925. 

Then every arc of length 1 lies in some infinite strip of width bo, and there is 

a unique arc of length 1 (called the broadworm, see Fig. 1) that lies in no nar- 

rower strip. 

Using this result, we can determine the smallest rectangle that can accommo- 

date every arc of length L, a result found by Jones and Schaer [4]. 

I 
b o sec cc 

Fig. 1. The broadworm 

bo 

THEOREM 8. Among all rectangles that can accommodate all arcs of length 

L, the rectangle with least area has sides Lb o and L(1-b2 )  ~ and area approxi- 

mately 0.394385 L 2. 
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PROOF. Without loss of generality we assume that L = 1. Let F be an arc 

of  length 1, and for each direction 0 let w(O) be the width of  Fin the direction 0. 

I f  w(O)< b o for every 0, then F surely lies in the rectangle with sides bo and 

(1 - bo2) ~, because (1 - b2) ~r > bo. Otherwise by continuity there is a direction 

0o in which F has width w(Oo) = bo. The rectangle circumscribed about F with 

one side in the direction 0o has a side of  length b o; let a be the length of  the other 

side. Joining the endpoints of F by a segment gives a closed curve of length at 

most 2 about which the rectangle is circumscribed, and according to Lemma 1, 

a < (1 - b 2 )  ~. Thus the rectangle with sides of length b o and (1 - b 2 )  ~ can 

accommodate every unit arc. 

No smaller rectangle can accommodate every such arc, because one side must 

be at least bo (so that the broadworm can be accommodated) and the diagonal 

must be at least 1 (so that the unit segment can be accommodated). 

The area of any closed, convex set that contains a congruent copy of every 

arc of  length L must be at least boL2/2 ~ 0.219463 L 2 . This follows from the fact 

that the diameter of such a set must be at least L and its width in the direction 

perpendicular to that diameter must be at least boL. Meir's semidisk, with area 

1rL2/8 ~ 0.392699 L 2 , is a little smaller than the smallest rectangle. It is known 

(see [8]) that a certain truncated sector of  area less than 0.3443 L 2 contains a 

congruent copy of every arc of length L, but the gap between this area and the 

lower bound given above is quite wide. 

REMARK. Since this paper was submitted for publication, it has come to our 

attention that many of these results have been found independently by G. D. 

Chakerian and M. S. Klamkin (Min imal  Covers f o r  Closed Curves, to appear 

in Mathematics Magazine). 
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